Warehouse control system software can automate and command devices and machinery in innovative ways. As robotics advance, moving toward a more cohesive control structure can yield streamlined, efficient results.
Machines controlled by a comprehensive (WCS) warehouse control system include storage devices like an automated storage and retrieval system. Vertical lift modules and similar machines could also be operated by a WCS. Many other devices in warehouse and distribution center environments can be automated and optimized by warehouse control system software.
A comprehensive WCS can not only control the machines’ function but operate in real time. The real-time capacity of broad warehouse control systems offers more sensitivity to current warehouse needs. With real-time information, each decision can be made from a more informed standpoint.
The result for a warehouse with WCS is better, faster decisions. The ultimate outcome of more informed commands and actions is getting material where it needs to go faster.
A comprehensive WCS, (warehouse control system) can interface with many types of machinery. These include vertical or horizontal carousels. It also interfaces with conveyor systems and sortation systems. Pick-to-light and put-to-light systems that give order pickers clear instructions can also be controlled by a WCS. As automation and robotics evolve, a high-level WCS can reduce disjointed situations in warehouses. Many types of machines, including robotic ones, can be controlled to work in harmony.
A machine in a warehouse needs commands to operate. Of course, in the past, a human would direct the machine. Control through a WCS provides an opportunity to remove human labor resources. This solution can combat labor shortages and scheduling difficulties. A WCS can manage and automate the activities of a machine. The person or the few people controlling a broad WCS have more leverage over the machines operating in a warehouse or distribution center.
A WCS can talk to other business systems. Enterprise research planning (ERP) software like Oracle can interface with it. A WCS can communicate with a warehouse management system (WMS) that helps with the flow of inventory and goods. Typically, it lives in the middle of the architecture. It communicates at different speeds to different partner software and controls like warehouse inventory control system software.
One advantage of comprehensive warehouse control software is the options provided by the database. Machine controls can’t usually handle large databases. A WCS offers the functionality to connect with a database. It can also integrate data from an ERP system and parses the data into simpler commands the controls can digest.
From the central location in the architecture, the WCS controls the equipment. Since it can process real-time data, its commands flow from the warehouse’s overall needs at that moment. The tasks are carried out by the machines within an optimized timeframe and with optimized speed. The reduced interval of time from task creation to successful task completion is crucial. Real-time data and faster execution make a big difference.
Automation equipment is frequently packaged with a warehouse control system. Although the equipment has controls, they are situated at too low of a level. They only operate that individual machine. For example, a vertical lift module’s WCS may not talk to a carousel’s WCS. Warehouse operators are not getting much more leverage over the machines. A centralized WCS can optimize, connect, and process more systems. It is agnostic, meaning it can control many different machines.
A WCS can sometimes integrate to an ERP. However, in most cases, there are massive differences in coding structures. Integration isn’t practical, and it’s not often worth the effort of integration.
The scope of warehouse control system software applications can vary widely. Some arrive with and solely work with the machinery, while others can control any type of machinery. A vertical lift module with a WCS from a manufacturer cannot communicate with a vertical carousel’s distinct WCS. The result is two islands of non-communicative software. A high-level WCS could control both. It synthesizes operations in a warehouse or distribution center.
When improved streamlining and coordination is feasible, it provides a higher return on investment. It’s more feasible to benefit from investments in machinery, software and personnel. The expertise of operators stays shallower when there are many software packages. Employees working in fewer warehouse control systems have more time and incentive to learn and remember details and quirks.
Some of the abilities of a programmable logic controller are similar to those of a warehouse control system software. However, they are too limited in volume of commands. Lacking a database, a PLC can only be directed for a limited number of actions. Meanwhile, a centralized WCS can feed information to devices more slowly, on a time-dependent basis. A PLC cannot meter commands like a WCS. It cannot store many commands because the database is too small.
A centralized WCS has more human-like intelligence that can orchestrate different machines simultaneously throughout a daily cycle by gathering and metering more real-time information. A WCS has this capacity due to its database size.
With a centralized, agnostic warehouse control system software, the need for separate WMS and WES lessens. Warehouse stock control software can be an involved task to implement. The best solution is a comprehensive package. A business can buy a package performing all three functions. Better yet, it can be a modular package. Components could be added as new needs arise. A modular WCS would be suited to the diverse needs of a distribution environment, a manufacturing environment or a corporation’s warehouse. Beyond being adaptable to the type of center, a modular WCS can scale as the business develops.
With modular options, the software expenditure can become commensurate with business needs. Why should a company pay for a comprehensive software solution when it only uses 70% of it? That vendor is over-solving their client’s software problems and needs. In effect, they are charging for unused functionality.
When weighing options for improving control and leverage over automated equipment, many people consider ERP-based options. They think the best route would be to start moving into unused portions of their existing ERP. Many operators believe their existing ERP has additional functionality for automation that could be useful or consider upgrading it. However, an ERP is often lacking in quality warehouse control system software.
A simple WCS connected to an ERP may produce narrow results. When a WMS is involved with the ERP, the information delivered is broader. It’s not limited by what is stored in that device.
The flow of data and commands between warehouse control system software to different locations varies depending on the type of connection. When it flows down to a device, time is a priority. Meanwhile, when interfacing to an ERP, time is not of the essence.
An advantage of warehouse control system software sending a command to a device is that a response can return immediately. The device can quickly affirm when it will complete the task. This can happen on the scale of a millisecond. It happens in real time, using a web service, a web API or a TCP/IP interface. Faster response times keep many types of actions moving forward in a distribution center or warehouse. Databases don’t allow for a real-time interface.
When interfacing to an ERP, real-time interactions are not a priority. An ERP system doesn’t care when the designated action occurs. It could take place in the next 30 seconds or five minutes later. When a WCS interfaces to a device, time is a priority. The result is that a WCS provides the level of necessary responsiveness. An ERP isn’t as sensitive to time.
It’s important to consider whether warehouse control system software or its components should reside in the cloud. Guaranteeing responsiveness is a vital part of location considerations. Those with experience in WCS operations warn of the challenges of securing real-time interface to that piece of machinery. There are instances when dark fiber can guarantee a high level of response. In that case, a WCS that resides in the cloud can work well. However, guaranteeing real-time response with cloud-hosted databases remains a major challenge for a lot of companies.
In many cases, some components end up being housed in the cloud, while others remain local. This hybrid situation can keep operations running smoothly. Components that do not depend on a sensitive, millisecond response time can be stored in the cloud. Meanwhile, on-premises machinery interfaces can better guarantee the faster travel of information. Speed is the key.
Those tasked with preparing for the future of automation don’t have an easy path in front of them. Nevertheless, the innovation that developing robotic machines produce can be exciting. There are opportunities to grow and streamline many types of businesses. With streamlined control, disparate software challenges and maintenance hassles can fade away.
One of the best decisions a material environment can make is choosing vendors with the proper knowledge and perspective. In selecting vendors, it is important to try to choose ones who have a proactive, big-picture view. The temptation is to choose vendors whose expertise is deep in one area. Expertise about one piece of machinery, or a line of machines, can feel extremely valuable. However, this is often a short-term solution that provides limited long-term value. Expertise with the controls of only one line of machines fails to assist much in a long-term strategy.
Failing to choose vendors who hold an eagle-eye view of logistics, warehouses, and the drift toward automation and robotics has consequences. Without foresight, a COO can end up trying to reassess and renovate their software and machinery situation every few years. Expanding possibilities for robotic integration should be the priority.
Having a ten or fifteen-year perspective and level of proactivity saves effort. A long-term decision is to value and implement an agnostic software solution. A comprehensive WCS can ensure a business is not limited by past investments to old machinery and the associated software. Old software that is unlinked will hold back the possibilities for streamlining and automation. Warehouse operations, distribution centers, and large corporations with warehouses that plan for the future will reap the benefits.
In business, having great vision and a clear direction are invaluable skills. Warehousing and logistics are no different. On a large and small scale, focusing on growth and optimization is invaluable. When each item, package, or pallet flows toward its ultimate destination sooner, the streams of small actions add up.
To help create a current of efficiency, vendors who speak the languages of logistics, technology and business make the best partners. When a vendor understands overall operations, the need to constantly explain dissipates. Operators won’t need to brainstorm workarounds resulting from vendors’ lack of understanding. Cobbling together solutions isn’t necessary. Solutions providers who think long-term and are already acquainted with your pain points help operators develop and execute a strategy for proactive, long-term success with fewer adjustments.
Choose machinery with the future in mind. For each specific task, the appropriate, best-fit machine makes a world of difference. If an AS/RS serves the objectives better, settling for three carousels is not worthwhile. Creating a future-focused plan hospitable to robotics, and prioritizing machinery that fits within that plan, can pay off.
One area where robotic solutions are advancing rapidly is for clearly defined tasks. Having robots complete simple, discrete tasks can be wise. The machines ceding tasks to robotic machines at present are conveyors. While conveyors bolted to the floor provide limited movement of goods, agile robots will prove useful for movement-based tasks. It is easy to imagine that by using sensors, they become capable of more efficient movement. By multiplying this agility beyond the limited movement of conveyors, much more efficiency becomes possible.
Robotics machines are usually packaged with OEM software. This OEM-supply WCS is limited in many cases. Integrating them into a broad software solution in warehouses on a wider scale can be challenging, yet may produce quality results.
Autonomous mobile robots (AMRs) used for transportation have proven to be a great addition to an overall solution for warehouses. They can work with automated storage devices. However, they’re not capable of interfacing to the certain carousels. Two separate WCSs create unneeded steps and clutter in terms of the volume of software needed. The need to manage and maintain that software piles on extra layers of complexity.
As robotics progress beyond AMRs to those capable of more complex tasks, using one comprehensive warehouse control system software will become increasingly important. Presently, robots completing discrete actions or traveling between points don’t need to communicate with other machines often. As the possibilities for robotics develop, an OEM WCS’s limits would become apparent. For example, the possibility of gamifying the warehouse with augmented reality could make warehouse operations more efficient. The control system from a robotics or carousel manufacturer can’t be expected to control the interface to the user. An agnostic, high-level WCS would shine in managing more developed robotics, along with more classic machines like carousels.
The prohibitive nature of OEM warehouse control systems not having a robust database is a concern. That is especially the case when trying to plan a road map for warehousing or distribution. Typically, the limited database of OEM software will slow down the progression toward the business’s goals in the future. Avoiding decisions or maintenance of systems that will not scale with discrete should be a priority. In fact, by not controlling the machines from a high, informed level and letting them work together, the business is not maximizing its investment in the machines. Nor is software providing a good return on the investment. By controlling through a higher level, more informed warehouse control system software, unprecedented cohesion becomes possible.
Taking a bird’s eye, long-term view for ten years is key to making the correct decisions for warehouse control system software. Synchronizing the road map between vendors and other partners will help the business advance toward its goals. Crafting an automation roadmap with scalable software that is financially modular is the best option. A comprehensive WCS designed to be modular and priced according to the currently needed modules can make the difference. As needs change, scaling up within the next month should be possible. Growing with modules of software is easier than adapting to new software packages.
The future of robotic integration into the material-handling world is exciting. With foresight and a well-formulated strategy for software and machinery cohesion, efficiency can soar. High-level warehouse control system software can propel businesses further. Businesses relying on many separate WCSs that came with the machinery will need to keep maintaining them. They’ll need to keep dealing with their limitations and the inefficiency of a disjointed web of disparate software. Meanwhile, those using a streamlined WCS solution will do more with less software. They can push warehouse operations further, faster.